API¶
Data Classes¶
The Well provides two main class WellDataset
and WellDataModule
to handle the raw data that are stored in .hdf5
files. The WellDataset
implements a map-style PyTorch Dataset. The WellDataModule
provides dataloaders for training, validation, and test. The tutorial provides a guide on how to use these classes in a training pipeline.
Dataset¶
The WellDataset
is a map-style dataset. It converts the .hdf5
file structure expected by the Well into torch.Tensor
data. It first processes metadata from the .hdf5
attributes to allow for retrieval of individual samples.
the_well.data.WellDataset
¶
Bases: Dataset
Generic dataset for any Well data. Returns data in B x T x H [x W [x D]] x C format.
Train/Test/Valid is assumed to occur on a folder level.
Takes in path to directory of HDF5 files to construct dset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Optional[str]
|
Path to directory of HDF5 files, one of path or well_base_path+well_dataset_name must be specified |
None
|
normalization_path
|
str
|
Path to normalization constants - assumed to be in same format as constructed data. |
'../stats.yaml'
|
well_base_path
|
Optional[str]
|
Path to well dataset directory, only used with dataset_name |
None
|
well_dataset_name
|
Optional[str]
|
Name of well dataset to load - overrides path if specified |
None
|
well_split_name
|
str
|
Name of split to load - options are 'train', 'valid', 'test' |
'train'
|
include_filters
|
List[str]
|
Only include files whose name contains at least one of these strings |
[]
|
exclude_filters
|
List[str]
|
Exclude any files whose name contains at least one of these strings |
[]
|
use_normalization
|
bool
|
Whether to normalize data in the dataset |
False
|
n_steps_input
|
int
|
Number of steps to include in each sample |
1
|
n_steps_output
|
int
|
Number of steps to include in y |
1
|
min_dt_stride
|
int
|
Minimum stride between samples |
1
|
max_dt_stride
|
int
|
Maximum stride between samples |
1
|
flatten_tensors
|
bool
|
Whether to flatten tensor valued field into channels |
True
|
cache_small
|
bool
|
Whether to cache small tensors in memory for faster access |
True
|
max_cache_size
|
float
|
Maximum numel of constant tensor to cache |
1000000000.0
|
return_grid
|
bool
|
Whether to return grid coordinates |
True
|
boundary_return_type
|
str
|
options=['padding', 'mask', 'exact', 'none'] How to return boundary conditions. Currently only padding supported. |
'padding'
|
full_trajectory_mode
|
bool
|
Overrides to return full trajectory starting from t0 instead of samples for long run validation. |
False
|
name_override
|
Optional[str]
|
Override name of dataset (used for more precise logging) |
None
|
transform
|
Optional[Augmentation]
|
Transform to apply to data. In the form |
None
|
min_std
|
float
|
Minimum standard deviation for field normalization. If a field standard deviation is lower than this value, it is replaced by this value. |
0.0001
|
storage_options
|
Option for the ffspec storage. |
None
|
Source code in the_well/data/datasets.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
|
to_xarray(backend='dask')
¶
Export the dataset to an Xarray Dataset by stacking all HDF5 files as Xarray datasets along the existing 'sample' dimension.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
backend
|
Literal['numpy', 'dask']
|
'numpy' for eager loading, 'dask' for lazy loading. |
'dask'
|
Returns:
Type | Description |
---|---|
xarray.Dataset: The stacked Xarray Dataset. |
Examples:
To convert a dataset and plot the pressure for 5 different times for a single trajectory:
>>> ds = dataset.to_xarray()
>>> ds.pressure.isel(sample=0, time=[0, 10, 20, 30, 40]).plot(col='time', col_wrap=5)
Source code in the_well/data/datasets.py
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 |
|
DataModule¶
The WellDataModule
provides the different dataloaders required for training, validation, and testing. It has two kinds of dataloaders: the default one that yields batches of a fixed time horizon, and rollout ones that yields batches to evaluate rollout performances.
the_well.data.WellDataModule
¶
Bases: AbstractDataModule
Data module class to yield batches of samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
well_base_path
|
str
|
Path to the data folder containing the splits (train, validation, and test). |
required |
well_dataset_name
|
str
|
Name of the well dataset to use. |
required |
batch_size
|
int
|
Size of the batches yielded by the dataloaders |
required |
include_filters
|
List[str]
|
Only file names containing any of these strings will be included. |
[]
|
exclude_filters
|
List[str]
|
File names containing any of these strings will be excluded. |
[]
|
use_normalization
|
bool
|
Whether to use normalization on the data. Currently only supports mean/std. |
False
|
max_rollout_steps
|
int
|
Maximum number of steps to use for the rollout dataset. Mostly for memory reasons. |
100
|
n_steps_input
|
int
|
Number of steps to use as input. |
1
|
n_steps_output
|
int
|
Number of steps to use as output. |
1
|
min_dt_stride
|
int
|
Minimum stride in time to use for the dataset. |
1
|
max_dt_stride
|
int
|
Maximum stride in time to use for the dataset. If this is greater than min, randomly choose between them. Note that this is unused for validation/test which uses "min_dt_stride" for both the min and max. |
1
|
world_size
|
int
|
Number of GPUs in use for distributed training. |
1
|
data_workers
|
int
|
Number of workers to use for data loading. |
4
|
rank
|
int
|
Rank of the current process in distributed training. |
1
|
transform
|
Optional[Augmentation]
|
Augmentation to apply to the data. If None, no augmentation is applied. |
None
|
dataset_kws
|
Optional[Dict[Literal['train', 'val', 'rollout_val', 'test', 'rollout_test'], Dict[str, Any]]]
|
Additional keyword arguments to pass to each dataset, as a dict of dicts. |
None
|
storage_kwargs
|
Optional[Dict]
|
Storage options passed to fsspec for accessing the raw data. |
None
|
Source code in the_well/data/datamodule.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
|
rollout_test_dataloader()
¶
Generate a dataloader for rollout test data.
Returns:
Type | Description |
---|---|
DataLoader
|
A dataloader |
Source code in the_well/data/datamodule.py
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
|
rollout_val_dataloader()
¶
Generate a dataloader for rollout validation data.
Returns:
Type | Description |
---|---|
DataLoader
|
A dataloader |
Source code in the_well/data/datamodule.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
test_dataloader()
¶
Generate a dataloader for test data.
Returns:
Type | Description |
---|---|
DataLoader
|
A dataloader |
Source code in the_well/data/datamodule.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
|
train_dataloader()
¶
Generate a dataloader for training data.
Returns:
Type | Description |
---|---|
DataLoader
|
A dataloader |
Source code in the_well/data/datamodule.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
val_dataloader()
¶
Generate a dataloader for validation data.
Returns:
Type | Description |
---|---|
DataLoader
|
A dataloader |
Source code in the_well/data/datamodule.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
Metrics¶
The Well package implements a series of metrics to assess the performances of a trained model.
the_well.benchmark.metrics
¶
LInfinity
¶
Bases: Metric
Source code in the_well/benchmark/metrics/spatial.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
eval(x, y, meta)
staticmethod
¶
L-Infinity Norm
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor | ndarray
|
Input tensor. |
required |
y
|
Tensor | ndarray
|
Target tensor. |
required |
meta
|
WellMetadata
|
Metadata for the dataset. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
L-Infinity norm between x and y. |
Source code in the_well/benchmark/metrics/spatial.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
MSE
¶
Bases: Metric
Source code in the_well/benchmark/metrics/spatial.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
eval(x, y, meta)
staticmethod
¶
Mean Squared Error
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor | ndarray
|
Input tensor. |
required |
y
|
Tensor | ndarray
|
Target tensor. |
required |
meta
|
WellMetadata
|
Metadata for the dataset. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Mean squared error between x and y. |
Source code in the_well/benchmark/metrics/spatial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
NMSE
¶
Bases: Metric
Source code in the_well/benchmark/metrics/spatial.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
eval(x, y, meta, eps=1e-07, norm_mode='norm')
staticmethod
¶
Normalized Mean Squared Error
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor | ndarray
|
Input tensor. |
required |
y
|
Tensor | ndarray
|
Target tensor. |
required |
meta
|
WellMetadata
|
Metadata for the dataset. |
required |
eps
|
float
|
Small value to avoid division by zero. Default is 1e-7. |
1e-07
|
norm_mode
|
str
|
Mode for computing the normalization factor. Can be 'norm' or 'std'. Default is 'norm'. |
'norm'
|
Returns:
Type | Description |
---|---|
Tensor
|
Normalized mean squared error between x and y. |
Source code in the_well/benchmark/metrics/spatial.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
NRMSE
¶
Bases: Metric
Source code in the_well/benchmark/metrics/spatial.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
eval(x, y, meta, eps=1e-07, norm_mode='norm')
staticmethod
¶
Normalized Root Mean Squared Error
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor | ndarray
|
Input tensor. |
required |
y
|
Tensor | ndarray
|
Target tensor. |
required |
meta
|
WellMetadata
|
Metadata for the dataset. |
required |
eps
|
float
|
Small value to avoid division by zero. Default is 1e-7. |
1e-07
|
norm_mode
|
Mode for computing the normalization factor. Can be 'norm' or 'std'. Default is 'norm'. |
'norm'
|
Returns:
Type | Description |
---|---|
Tensor
|
Normalized root mean squared error between x and y. |
Source code in the_well/benchmark/metrics/spatial.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
RMSE
¶
Bases: Metric
Source code in the_well/benchmark/metrics/spatial.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
eval(x, y, meta)
staticmethod
¶
Root Mean Squared Error
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor | ndarray
|
torch.Tensor | np.ndarray Input tensor. |
required |
y
|
Tensor | ndarray
|
torch.Tensor | np.ndarray Target tensor. |
required |
meta
|
WellMetadata
|
WellMetadata Metadata for the dataset. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Root mean squared error between x and y. |
Source code in the_well/benchmark/metrics/spatial.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
VMSE
¶
Bases: Metric
Source code in the_well/benchmark/metrics/spatial.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
|
eval(x, y, meta)
staticmethod
¶
Variance Scaled Mean Squared Error
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor | ndarray
|
Input tensor. |
required |
y
|
Tensor | ndarray
|
Target tensor. |
required |
meta
|
WellMetadata
|
Metadata for the dataset. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Variance mean squared error between x and y. |
Source code in the_well/benchmark/metrics/spatial.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
|
VRMSE
¶
Bases: Metric
Source code in the_well/benchmark/metrics/spatial.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|
eval(x, y, meta)
staticmethod
¶
Root Variance Scaled Mean Squared Error
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor | ndarray
|
Input tensor. |
required |
y
|
Tensor | ndarray
|
Target tensor. |
required |
meta
|
WellMetadata
|
Metadata for the dataset. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Root variance mean squared error between x and y. |
Source code in the_well/benchmark/metrics/spatial.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|
binned_spectral_mse
¶
Bases: Metric
Source code in the_well/benchmark/metrics/spectral.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
eval(x, y, meta, bins=None, fourier_input=False)
staticmethod
¶
Binned Spectral Mean Squared Error. Corresponds to MSE computed after filtering over wavenumber bins in the Fourier domain.
Default binning is a set of three (approximately) logspaced from 0 to pi.
Note that, MSE(x, y) should match the sum over frequency bins of the spectral MSE.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
y
|
Tensor
|
Target tensor. |
required |
meta
|
WellMetadata
|
Metadata for the dataset. |
required |
bins
|
Tensor
|
Tensor of bin edges. If None, we use a default binning that is a set of three (approximately) logspaced from 0 to pi. The default is None. |
None
|
fourier_input
|
bool
|
If True, x and y are assumed to be the Fourier transform of the input data. The default is False. |
False
|
Returns:
Type | Description |
---|---|
Tensor
|
The power spectrum mean squared error between x and y. |
Source code in the_well/benchmark/metrics/spectral.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|